FDI related utilities
- fdhinfminusEvaluation of the- H∞-index of the transfer function matrix of a descriptor system model.
- fdhinfmaxEvaluation of the maximum of column norm of the transfer function matrix of a descriptor system model.
- fditspec_Computation of the weak or strong structure matrix of a descriptor system model.
- fdisspec_Computation of the strong structure matrix of a descriptor system model.
- fdiscond_Computation of the column-gains sensitivity condition of the transfer function matrix of a descriptor system model.
FaultDetectionTools.fdhinfminus — Function fdhinfminus(sys,freq) -> (β, ind, fr)Compute for a stable descriptor system sys = (A-λE,B,C,D) the H∞- index β of its transfer function matrix G(λ). If freq = missing (default), then β is the  minimum H∞-norm of the columns of G, ind is the index of the minimum-norm column and fr is  the frequency where the minimum H∞-norm of the columns is achieved. If freq is a real value or  a real vector of frequency values, then β is the minimum of the 2-norms of the columns of the  frequency responses of G evaluated for all values contained in freq, ind is the index of column  for which the minimum is achieved and fr is the corresponding frequency. 
FaultDetectionTools.fdhinfmax — Function fdhinfmax(sys,freq) -> (γ, ind, fr)Compute for a descriptor system sys = (A-λE,B,C,D), γ - the maximum norm of the columns of its transfer function matrix G(λ). If freq = missing (default), then γ is the  maximum H∞-norm of the columns of G, ind is the index of the maximum-norm column and fr is  the frequency where the maximum H∞-norm of the columns is achieved. If freq is a real value or  a real vector of frequency values, then γ is the maximum of the 2-norms of the columns of the  frequency responses of G evaluated for all values contained in freq, ind is the index of column  for which the maximum is achieved and fr is the corresponding frequency. 
FaultDetectionTools.fditspec_ — FunctionS = fditspec_(sysrf::DescriptorStateSpace; FDfreq = missing, block = false, poleshift = false, 
             FDtol, FDStol, atol = 0, atol1 = atol, atol2 = atol, rtol, fast = true)Compute the weak or strong binary structure matrix S of the transfer function matrix of a  linear time-invariant system sysrf  (typically representing the transfer channel from the fault inputs to residuals). sysrf has a descriptor system realization of the form sysrf = (Af-lambda*Ef,Bf,Cf,Df)  with a  q x mf transfer function matrix Rf(λ).  For the description of keyword parameters see the documentation of fditspec. 
FaultDetectionTools.fdisspec_ — Function fdisspec_(sysrf::DescriptorStateSpace, freq; block = false, stabilize = false, FDGainTol = 0.01, 
                 atol, atol1, atol2, atol3, rtol, fast = true) -> (S, gains)Compute the strong binary structure matrix S of the transfer function matrix of a  linear time-invariant system sysrf  (typically representing the transfer channel from the fault inputs to residuals). sysrf has a descriptor system realization of the form sysrf = (Af-lambda*Ef,Bf,Cf,Df)  with a  q x mf transfer function matrix Rf(λ).  For the description of keyword parameters see the documentation of fdisspec. 
FaultDetectionTools.fdiscond_ — Function fdiscond_(sysrf::DescriptorStateSpace, freq) -> (scond, β, γ)Compute for a stable descriptor system sysrf = (A-λE,B,C,D) with the transfer function matrix Rf(λ),  β - the H∞- index of Rf(λ), γ - the maximum of the columns norms of Rf(λ) and  scond - the column-gains sensitivity condition evaluated as scond := β/γ.  If freq is a vector of real frequency values, then β and γ are evaluated over the frequencies contained in freq.